2022貴州師范大學(xué)常微分方程考研復(fù)試大綱已公布!為了讓報考該院校數(shù)學(xué)專業(yè)學(xué)術(shù)型碩士研究生的同學(xué)對于考研復(fù)試大綱的內(nèi)容有更加深入的了解,高頓小編整理了2022貴州師范大學(xué)常微分方程考研復(fù)試大綱的有關(guān)信息,快來看看吧!
2022貴州師范大學(xué)常微分方程考研復(fù)試大綱
  一、考查目標(biāo)
  本考試大綱適用于貴州師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院數(shù)學(xué)專業(yè)學(xué)術(shù)型碩士研究生入學(xué)考試復(fù)試?!冻N⒎址匠獭肥谴髮W(xué)數(shù)學(xué)系本科生的一門重要基礎(chǔ)課程。要求考生了解常微分方程的形成和發(fā)展,認(rèn)識常微分方程的性質(zhì)和特點,掌握經(jīng)典的常微分方程和方程組的求解及其相關(guān)的理論證明。
 ?。ㄒ唬┛荚嚹康?/div>
  《常微分方程》是貴州師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院為招收全日制碩士研究生而設(shè)置的具有選拔性質(zhì)的復(fù)試科目,其目的是考察學(xué)生是否具備本學(xué)科各專業(yè)學(xué)術(shù)型碩士研究生學(xué)習(xí)所要求的水平,為貴州師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院擇優(yōu)選拔碩士研究生提供依據(jù)。
  (二)考試的基本要求
  要求考生初步掌握各類常微分方程的基本解法,理解和掌握常微分方程的基本理論,能利用其理論、方法去分析和解決一些實際問題,并為后繼課程的學(xué)習(xí)打下一定的基礎(chǔ)。
  二、考試形式與試卷結(jié)構(gòu)
 ?。ㄒ唬┰嚲沓煽兗翱荚嚂r間
  本試卷滿分為100分??荚嚂r間為20分鐘。
  (二)答題方式
  口試。
  (三)試卷題型結(jié)構(gòu)
  基本概念、簡答、課程專業(yè)素養(yǎng)。
  三、考查范圍
 ?。ㄒ唬┚w論
  常微分方程的基本概念
  1、常微分方程
  2、階
  3、線性與非線性
  4、解、隱式解、通解、特解
  5、一階方程的積分曲線和方向場
 ?。ǘ┮浑A微分方程的初等解法
  1、變量分離方程,可化為變量分離的方程
  2、線性方程,貝努利方程
  3、恰當(dāng)方程的概念,充要條件,恰當(dāng)方程的通解;積分因子的概念及其求法
  4、一階隱式方程(四種類型方程)的解法
  (三)一階微分方程解的存在定理
  1、一階微分方程解的存在唯一性定理;求近似解及誤差估計
  2、有界及無界區(qū)域中解的延拓定理
  3、解對初值的連續(xù)依賴和可微性定理
  4、奇解概念、求法及克萊羅方程
 ?。ㄋ模└唠A微分方程
  1、齊次線性方程解的性質(zhì)和結(jié)構(gòu)
  2、非齊次線性方程通解的結(jié)構(gòu)和常數(shù)變易法
  3、常系數(shù)齊次線性方程通解的求法,歐拉方程的解法
  4、用比較系數(shù)法求非齊次線性方程的一個特解
  5、高階方程的降階
  6、二階線性方程的冪級數(shù)解法
 ?。ㄎ澹┚€性微分方程組
  1、一階線性方程組解的存在唯一性定理
  2、線性方程組的一般理論
  3、常系數(shù)線性方程組的解矩陣,基解矩陣
  4、基解矩陣的計算
  四、參考教材
  王高雄等,常微分方程,第三版,高等教育出版社,2006年。
  本文內(nèi)容整理自貴州師范大學(xué)學(xué)位與研究生教育。
  以上就是【2022貴州師范大學(xué)常微分方程考研復(fù)試大綱一覽!】的全部內(nèi)容,如果你想要學(xué)習(xí)更多考研方面的知識,歡迎大家前往高頓考研考試頻道!
  小編為2024考研的小伙伴們準(zhǔn)備了豐富的學(xué)習(xí)資料,點擊下方藍(lán)色圖片即可領(lǐng)取哦~
考研備考資料

關(guān)注公眾號
快掃碼關(guān)注
公眾號吧
考研公眾號
115