2023年考研大綱已經(jīng)出爐,下面上海高頓考研將2023考研數(shù)學(xué)一線性代數(shù)部分大綱原文同步給大家,考生們可以對照下往年的考研大綱看有哪些變化。領(lǐng)取超全解析文檔可以掃面最下方二維碼。
2023考研數(shù)學(xué)大綱,數(shù)學(xué)一考研大綱,線性代數(shù)考研大綱
一、行列式【考試內(nèi)容
行列式的概念和基本性質(zhì)行列式按行(列)展開定理
【考試要求】
1.了解行列式的概念,掌握行列式的性質(zhì).
2.會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式
二、矩陣【考試內(nèi)容】
矩陣的概念矩陣的線性運算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價分塊矩陣及其運算
【考試要求】
1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質(zhì).
2.掌握矩陣的線性運算、乘法、轉(zhuǎn)置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì).
3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.
4.理解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法.
5.了解分塊矩陣及其運算.
三、向量
【考試內(nèi)容】
向量的概念 向量的線性組合與線性表示 向量組的線性相關(guān)與線性無關(guān) 向量組的極大線性無關(guān)組等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系 向量空間及其相關(guān)概念 n維向量空間的基變換和坐標變換 過渡矩陣 向量的內(nèi)積 線性無關(guān)向量組的正交規(guī)范化方法 規(guī)范正交基正交矩陣及其性質(zhì)
【考試要求】
1.理解n維向量、向量的線性組合與線性表示的概念。
2.理解向量組線性相關(guān),線性無關(guān)的概念,堂握向量組線性相關(guān),線性無關(guān)的有關(guān)性質(zhì)及判別法
3.理解向量組的極大線性無關(guān)組和向量組的秩的概念,會求向量組的極大線性無關(guān)組及秩。
4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系
5.了解n維向量空間、子空間、基底、維數(shù)、坐標等概念
6.了解基變換和坐標變換公式,會求過渡矩陣
7.了解內(nèi)積的概念,掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法
8.了解規(guī)范正交基、正交矩陣的概念以及它們的性質(zhì)。
四、線性方程組【考試內(nèi)容】
線性方程組的克拉默(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質(zhì)和解的結(jié)構(gòu)齊次線性方程組的基礎(chǔ)解系和通解解空間非齊次線性方程組的通解
【考試要求】
1.會用克拉默法則.
2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件
3.理解齊次線性方程組的基礎(chǔ)解系、通解及解空間的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法.
4.理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念
5.掌握用初等行變換求解線性方程組的方法
五、矩陣的特征值和特征向量
【考試內(nèi)容】
矩陣的特征值和特征向量的概念、性質(zhì)相似變換相似矩陣的概念及性質(zhì)矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特征值特征向量及其相似對角矩陣
【考試要求】
1.理解矩陣的特征值和特征向量的概念及性質(zhì),會求矩陣的特征值和特征向量
2.理解相似矩陣的概念、性質(zhì)及矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法.
3.掌握實對稱矩陣的特征值和特征向量的性質(zhì)
六、二次型
【考試內(nèi)容】
二次型及其矩陣表示合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標準形和規(guī)范形 用正交變換和配方法化二次型為標準形 二次型及其矩陣的正定性
【考試要求】
1.掌握二次型及其矩陣表示,了解二次型秩的概念,了解合同變換與合同矩陣的概念,了解二次型的標準形、規(guī)范形的概念以及慣性定理
以上就是2023考研數(shù)學(xué)一線性代數(shù)部分的大綱內(nèi)容,備考的小伙伴可以根據(jù)大綱變化及時做出調(diào)整。其他科目考研大綱后續(xù)也會同步給大家。

掃碼可以領(lǐng)取超全解析文檔