考研數(shù)學一直是考生們最為頭疼的問題之一,考研數(shù)學的考點較多且難,需要考生認真復習。為了大家更好的了解,小編為大家整理了考研數(shù)學(三)重要考點:微積分的詳細內(nèi)容,一起來看看吧。
2024考研數(shù)學(三)考點:微積分
  一、函數(shù)、極限、連續(xù)
  【考試內(nèi)容】
  函數(shù)的概念及表示法、函數(shù)的有界性、單調(diào)性、周期性和奇偶性、復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)、基本初等函數(shù)的性質(zhì)及其圖形、初等函數(shù)、函數(shù)關(guān)系的建立。
  數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限和右極限無窮小量和無窮大量的概念及其關(guān)系無窮小量的性質(zhì)及無窮小量的比較極限的四則運算極限存在的兩個準則:單調(diào)有界準則和夾逼準則兩個重要極限;函數(shù)連續(xù)的概念、函數(shù)間斷點的類型、初等函數(shù)的連續(xù)性、閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。
  【考試要求】
  1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應用問題的函數(shù)關(guān)系.
  2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.
  3.理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.
  4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.
  5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關(guān)系.
  6.了解極限的性質(zhì)與極限存在的兩個準則,掌握極限的四則運算法則,掌握利用兩個重要極限求極限的方法.
  7.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.
  8.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型.
  9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應用這些性質(zhì).
  二、一元函數(shù)微分學
  【考試內(nèi)容】
  導數(shù)和微分的概念、導數(shù)的幾何意義和經(jīng)濟意義、函數(shù)的可導性與連續(xù)性之間的關(guān)系、平面曲線的切線與法線、導數(shù)和微分的四則運算、基本初等函數(shù)的導數(shù)、復合函數(shù)、反函數(shù)和隱函數(shù)的微分法、高階導數(shù)、一階微分形式的不變性、微分中值定理、洛必達(L'Hospital)法則、函數(shù)單調(diào)性的判別、函數(shù)的極值、函數(shù)圖形的凹凸性、拐點及漸近線、函數(shù)圖形的描繪、函數(shù)的最大值與最小值。
  【考試要求】
  1.理解導數(shù)的概念及可導性與連續(xù)性之間的關(guān)系,了解導數(shù)的幾何意義與經(jīng)濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程.
  2.掌握基本初等函數(shù)的導數(shù)公式、導數(shù)的四則運算法則及復合函數(shù)的求導法則,會求分段函數(shù)的導數(shù),會求反函數(shù)與隱函數(shù)的導數(shù).
  3.了解高階導數(shù)的概念,會求簡單函數(shù)的高階導數(shù).
  4.了解微分的概念、導數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會求函數(shù)的微分.
  5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理.
  6.掌握用洛必達法則求未定式極限的方法.
  7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及其應用.
  8.會用導數(shù)判斷函數(shù)圖形的凹凸性
  三、一元函數(shù)積分學
  【考試內(nèi)容】
  原函數(shù)和不定積分的概念、不定積分的基本性質(zhì)、基本積分公式、定積分的概念和基本性質(zhì)、定積分中值定理、積分上限的函數(shù)及其導數(shù)、牛頓-萊布尼茨(Newton-Leibniz)公式、不定積分和定積分的換元積分法與分部積分法反常(廣義)積分定積分的應用
  【考試要求】
  1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法與分部積分法.
  2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會求它的導數(shù),掌握牛頓-萊布尼茨公式以及定積分的換元積分法和分部積分法.
  3.會利用定積分計算平面圖形的面積、旋轉(zhuǎn)體的體積和函數(shù)的平均值,會利用定積分求解簡單的經(jīng)濟應用問題.
  4.理解反常積分的概念,了解反常積分收斂的比較判別法,會計算反常積分.
  四、多元函數(shù)微積分學
  【考試內(nèi)容】
  多元函數(shù)的概念、二元函數(shù)的幾何意義、二元函數(shù)的極限與連續(xù)的概念、有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)、多元函數(shù)偏導數(shù)的概念與計算、多元復合函數(shù)的求導法與隱函數(shù)求導法二階偏導數(shù)、全微分、多元函數(shù)的極值和條件極值、最大值和最小值、二重積分的概念、基本性質(zhì)和計算、無界區(qū)域上簡單的反常二重積分。
  【考試要求】
  1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.
  2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì).
  3.了解多元函數(shù)偏導數(shù)與全微分的概念,會求多元復合函數(shù)一階、二階偏導數(shù),會求全微分,了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導數(shù).
  4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決一些簡單的應用問題.
  5.理解二重積分的概念,了解二重積分的基本性質(zhì),了解二重積分的中值定理,掌握二重積分的計算方法(直角坐標、極坐標),了解無界區(qū)域上較簡單的反常二重積分并會計算.
  五、無窮級數(shù)
  【考試內(nèi)容】
  常數(shù)項級數(shù)的收斂與發(fā)散的概念、收斂級數(shù)的和的概念、級數(shù)的基本性質(zhì)與收斂的必要條件、幾何級數(shù)與p級數(shù)及其收斂性、正項級數(shù)收斂性的判別法、任意項級數(shù)的絕對收斂與條件收斂、交錯級數(shù)與萊布尼茨定理、冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域、冪級數(shù)的和函數(shù)、冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)、簡單冪級數(shù)的和函數(shù)的求法、初等函數(shù)的冪級數(shù)展開式。
  【考試要求】
  1.理解常數(shù)項級數(shù)收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件.
  2.掌握幾何級數(shù)及p級數(shù)的收斂與發(fā)散的條件.
  3.掌握正項級數(shù)收斂性的比較判別法和比值判別法,根值判別法,會用積分判別法.
  4.掌握交錯級數(shù)的萊布尼茨判別法.
  5.了解任意項級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關(guān)系.
  6.理解冪級數(shù)收斂半徑的概念,并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法.
  7.了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項求導和逐項積分),會求一些冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項級數(shù)的和.
  8.掌握麥克勞林(Maclaurin)展開式,會用它們將一下簡單函數(shù)間接展開為冪級數(shù).
  六、常微分方程與差分方程
  【考試內(nèi)容】
  常微分方程的基本概念、變量可分離的微分方程、齊次微分方程、一階線性微分方程、線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理、二階常系數(shù)齊次線性微分方程及簡單的非齊次線性微分方程、差分與差分方程的概念、差分方程的通解與特解、一階常系數(shù)線性差分方程、微分方程的簡單應用
  【考試要求】
  1.了解微分方程及其階、解、通解、初始條件和特解等概念.
  2.掌握變量可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法.
  3.理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu).
  4.掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程.
  5.會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程.
  6.了解差分與差分方程及其通解與特解等概念.
  7.了解一階常系數(shù)線性差分方程的求解方法.
  8.會用微分方程求解簡單的經(jīng)濟應用問題.
  以上就是學姐為大家整理的【2024考研數(shù)學(三)考點:微積分】的全部內(nèi)容!想了解更多關(guān)于考研的相關(guān)信息,請關(guān)注高頓考研官網(wǎng)查詢,祝大家考研成功。另外,小編為2024考研的小伙伴們準備了豐富的學習資料,點擊下方藍色小卡片即可獲取哦~